Binary Search + Linear Search, Time Complexity: O(N)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26class Solution {
// O(logN)
private int binarySearch(int[] nums,int target,int l,int r){
while(l<=r){
int mid=l+(r-l)/2;
if(nums[mid]==target) return mid;
else if(nums[mid]>target) r=mid-1;
else l=mid+1;
}
return -1;
}
// O(N)
private int[] util(int[] nums,int x){
int l=x,r=x;
while(l>=0&&nums[l]==nums[x]) l--;
while(r<=nums.length-1&&nums[r]==nums[x]) r++;
return new int[]{l+1,r-1};
}
public int[] searchRange(int[] nums, int target) {
int x=binarySearch(nums,target,0,nums.length-1);
if(x==-1) return new int[]{-1,-1};
else return util(nums,x);
}
}
Binary Search on left and right branch, Time Complexity: O(logN)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47class Solution {
private int binarySearch(int[] nums,int target,boolean left,int l,int r){
while(l<r){
int mid=l+(r-l)/2;
if(nums[mid]==target){
if(left){
r=mid;
}else {
l=mid+1;
}
}else if(nums[mid]>target){
r=mid-1;
}else{
l=mid+1;
}
}
if(!left&&nums[l]!=target) l-=1;
return nums[l]==target?l:-1;
}
public int[] searchRange(int[] nums, int target) {
if(nums==null||nums.length==0) return new int[]{-1,-1};
int l=binarySearch(nums,target,true,0,nums.length-1);
if(l==-1) return new int[]{-1,-1};
int r=binarySearch(nums,target,false,0,nums.length-1);
return new int[]{l,r};
}
/*
private int binarySearch(int[] nums,int target,boolean left,int l,int r){
while(l<r){
int mid=l+(r-l)/2;
if(nums[mid]==target){
if(left){
r=mid;
}else {
l=mid;
if((r-l)==1&&nums[l]==nums[r]) return r;
if((r-l)==1&&nums[l]!=nums[r]) return l;
}
}else if(nums[mid]>target){
r=mid-1;
}else{
l=mid+1;
}
}
return nums[l]==target?l:-1;
}*/