Approach 1: Brute force, Time complexity: O(n^2)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15class Solution {
public int trap(int[] height) {
int ans=0;
for(int i=0;i<height.length;i++){
int left_max=0,right_max=0;
int m=i,n=i;
while(m>=0) left_max=Math.max(left_max,height[m--]);
while(n<=height.length-1) right_max=Math.max(right_max,height[n++]);
// System.out.println(height[i]+", left_max: "+left_max+", right_max: "+right_max+
// ", capacity: "+ (Math.min(left_max,right_max)-height[i]));
ans+=Math.min(left_max,right_max)-height[i];
}
return ans;
}
}
Approach 2: Dynamic Programming, Time complexity: O(n)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24class Solution {
public int trap(int[] height) {
if(height==null||height.length==0) return 0;
int ans=0,size=height.length;
int[] left_max=new int[size],right_max=new int[size];
left_max[0]=height[0];
for(int i=1;i<size;i++){
left_max[i]=Math.max(height[i],left_max[i-1]);
}
right_max[size-1]=height[size-1];
for(int i=size-2;i>=0;i--){
right_max[i]=Math.max(height[i],right_max[i+1]);
}
for(int i=0;i<size;i++){
ans+=Math.min(left_max[i],right_max[i])-height[i];
}
return ans;
}
}
Approach 3: Using stacks, Time complexity: O(n)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17class Solution {
public int trap(int[] height) {
int ans=0,curr=0;
LinkedList<Integer> stack=new LinkedList<>();
while(curr<height.length){
while(!stack.isEmpty()&& height[curr]>height[stack.peek()]){
int top=stack.pop();
if(stack.isEmpty()) break;
int distance=curr-stack.peek()-1;
int boundedHeight=Math.min(height[curr],height[stack.peek()])-height[top];
ans+=distance*boundedHeight;
}
stack.push(curr++);
}
return ans;
}
}
Approach 4: Using 2 pointers, Time complexity: O(n), Space complexity: O(1)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19class Solution {
public int trap(int[] A) {
int left=0,right=A.length-1;
int res=0;
int maxleft=0, maxright=0;
while(left<right){
if(A[left]<=A[right]){
if(A[left]>=maxleft) maxleft=A[left];
else res+=maxleft-A[left];
left++;
}else{
if(A[right]>=maxright) maxright= A[right];
else res+=maxright-A[right];
right--;
}
}
return res;
}
}