DP1
2
3
4
5
6
7
8
9
10
11
12
13// Time Complexity: O(N), Space: O(N)
class Solution {
public int maxSubArray(int[] nums) {
int[] dp=new int[nums.length+1];
int max=Integer.MIN_VALUE;
dp[0]=0;
for(int i=1;i<=nums.length;i++){
dp[i]=Math.max(nums[i-1],dp[i-1]+nums[i-1]);
max=Math.max(dp[i],max);
}
return max;
}
}
DP, Kadane’s algorithm1
2
3
4
5
6
7
8
9
10
11
12// Time Complexity: O(N), Space: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int maxCur=nums[0];
int maxSoFar=nums[0];
for (int i=1;i<nums.length;i++) {
maxCur=Math.max(nums[i], maxCur+nums[i]);
maxSoFar=Math.max(maxCur, maxSoFar);
}
return maxSoFar;
}
}
link
Divide and Conquer1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25class Solution {
private int maxSubArrayUtil(int[] nums, int l, int r) {
if (l > r) {
return Integer.MIN_VALUE;
}
int m = l + (r - l) / 2, ml = 0, mr = 0;
// partition
int lmax = maxSubArrayUtil(nums, l, m - 1);
int rmax = maxSubArrayUtil(nums, m + 1, r);
// merge
for (int i = m - 1, sum = 0; i >= l; i--) {
sum += nums[i];
ml = Math.max(sum, ml);
}
for (int i = m + 1, sum = 0; i <= r; i++) {
sum += nums[i];
mr = Math.max(sum, mr);
}
return Math.max(Math.max(lmax, rmax), ml + mr + nums[m]);
}
public int maxSubArray(int[] nums) {
return maxSubArrayUtil(nums, 0, nums.length - 1);
}
}